Transitioning from CAmkES VMM to Microkit VMM

An experience report

Leigha VanderKlok, Embedded Engineer II

leigha.vanderklok@dornerworks.com

DORNERWORKS

Michigan, USA

Agenda

- Reasons to use Microkit
- My experience
- Developing real world products
- How DornerWorks can help

Background

- DornerWorks has a tremendous amount of experience working with seL4 CAmkES VMM technology
 - Have done work for multiple aerospace, defense firms (NASA, Collins Aerospace, US Army, and others)
- Tested several simple Microkit virtual machine configurations
 - ZCU102 not yet fully supported, but close

Compared Microkit VMM to CAmkES VMM and assessed against a list of requirements

Why use to Microkit VMM?

- Technical perspective
 - Integration with seL4 Device Driver Framework (sDDF)
 - Easier development process and less intimidating
 - Simpler abstractions and fewer abstractions could lower the barrier to entry
 - Stay up to date
 - Write applications in non-C languages
- Business perspective
 - Quicker on-boarding time is a plus for our customers and new engineers

DornerWorks can provide insight for Microkit as a business use case

High-Level Microkit vs CAmkES

Difference	Microkit	CAmkES
Distribution	Distributed as an SDK	Source code and project files managed using repotool.
High-level application configuration	System description file – written in xml.	Editing CAmkES attributes and settings in multiple application files.
Build system	No formal system.	CMake for file generation. Ninja is the build automation tool.
Language: Tooling and Libraries	Primarily Rust	Primarily C, parts of the toolchain are written in Python

What we like

- Simpler environment setup
 - Fewer dependencies
 - Install as SDK, no need to manage over a dozen separate git repos
 - Easy to grasp abstract concepts, user friendly manual

- System reporting feature (report.txt file)
 - A snapshot of a running system, describes which entities have access to which seL4 capabilities
 - Lists physical addresses of guest RAM and ELF file regions
 - Documents that there is no overlap in guest memory between VMs

Learning experience

- Need to make U-Boot changes if using some Xilinx boards with Microkit
 - U-Boot platform specific for some boards (ZynqMP and Versal) override the default U-Boot behavior that drops from EL2 to EL1 when executing the image using the 'go' command
 - Small changes must be made to U-Boot source to work with Microkit, extra step not needed for CAmkES
- Requires more manual configuration than CAmkES VMM
 - CAmkES can have a steeper learning curve
 - But...
 - A lot more code is generated (has a build system)
 - Most configuration is done via attributes and clearly laid out settings
 - Feels like I have a menu of options to choose from and a starting place
 - With Microkit it can be cumbersome to create a new design from scratch
 - More on this later!

Developing Real World Products

- Assessed Microkit readiness level using a 28-point test which analyzed
 - ☐ Type of supported platforms
 - ☐ Ability to passthrough devices
 - ☐ CPU pinning capabilities
 - ☐ Single and multiple virtual machine configurations
 - ☐ Architecture support
 - and more

Developing Real World Products

Important to our business:

- x86 support
 - Seeing a growth of demand for seL4 on x86
 - DornerWorks has been supporting a lot of seL4 x86 development
 - Customers desire:
 - High compatibility with modern and legacy software
 - x86 is used in more high-end computing platforms, where Intel has a large market share
- Multiple vCPUs per virtual_machine instance
 - Useful to DornerWorks use case, tend to use seL4 with hypervisor support enabled
 - Need to make full use of all cores a platform has for Linux to use and run on top of seL4
 - Won't be ready to transition without this

VM Composer

- <u>Dilemma</u>: Microkit can require more manual configuration than CAmkES
 - Ex; UART device passthrough: need to add memory regions, then map into a VM with the IRQ
 - CAmkES: add path to dtb attribute / hardware abstraction
 - Devs will start with known working example and then modify
- Generates all the code needed for a complete project and builds bootable images
- Currently generates CAmkES-based designs only

Theoretical Microkit VMM Example: Serial Server

```
<channel>
     <end pd="client" id="1" />
     <end pd="serial_server" id="2" />
</channel>
```

- Simplify copying and pasting boilerplate code
- Learn how a project is generated
- Ease some of Microkit's inconveniences

Conclusion

- OprnerWorks' engineers are excited to try Microkit
- Planning to add Microkit support to VM Composer
- Still need features to make an effective business use case to our customers

• Questions?