
严禁未授权复制、印刷、披露或传播该演示文稿严禁未授权复制、印刷、披露或传播该演示文稿

Bridging Academia and Industry

seL4 Summit 2024

Sydney, AU

10/16/2024

Yanyan Shen

Dhammika Elkaduwe

Manjunatha Swamy



Overview

seL4

A high-assurance, 
high-performance 
operating system 

microkernel

SkyOS-M

A vehicle operating 
system requiring high 

dependability and 
performance.

Dietmar Rabich / Wikimedia Commons / “Sydney (AU), Harbour Bridge – 2019 – 2179” / CC BY-SA 4.0

• System servers

• Driver framework

• POSIX

• 3rd libraries

• Software development kit

• System / performance utilities

• System monitoring

• Comprehensive test suites

• Hard work and optimism



The Essentials

• A classic multi-server design: process (aka root server), 
time, device, network, and file.

• Properly layered servers: to avoid circular dependency. 
(A hang happened in an unexpected way …)

• Process server: managing processes, kernel objects, and 
service namespace.

Servers

Drivers

• Each driver is still a separate process, not a shared library 
linked with a server.

• A device driver framework handles the common 
operations, and a driver just needs to implement cared 
functions.

• The device server starts drivers according to a device 
tree file and allocate MMIO regions and IRQs based on 
the file to drivers.

Core Libraries

• The interfaces provided by the servers.

• The interfaces used by native applications, servers, and 
drivers.

• Not POSIX, but good enough for building everything 
from scratch.

You do not have to be an seL4 expert to develop servers 
and drivers for SkyOS-M (well, eventually you will :-)



POSIX and 3rd Libraries

• Does it support fork?

• Does it support mmap? How about file-based mmap?

• Does it support select and poll?

• Does it support signals? Signals to threads?

• Even eventfd ...

Common Questions

Answers

• Implement the commonly-used POSIX APIs.

• Porting of musl libc by seL4 foundation is a good start.

• Libvsys is the layer emulating Linux system calls used by 
musl libc with core libraries.

• For instance, signal is purely emulated in user mode 
without kernel changes.

Benefits

• Help the adoption of SkyOS-M by application teams.

• Enable software reuse.

• Build the foundation for a wider adoption.



Tools

• Create applications without knowing about the 
underlying seL4 and OS framework.

• Use Conan recipes for managing dependencies.

• Manage prebuilt binary files to reduce build time.

• Generate disk images based on the recipe contents.

• Launch QEMU to run the whole OS with selected 
libraries and applications.

• Manage releases.

You do not have to be an OS hacker to develop applications 
for SkyOS-M.

SDK

Utilities

• Toybox – plenty of shell toys.

• Some tools (ps, top, lsof …) have to be built. 

Debug Tools

• Kernel / application syscall tracing.

• System / application status dump.

• Automated crash backtrace file.

• Continuous system status monitoring.

• In-memory minimal system (when FS or EMMC hangs).

• GDB.



FUSA

Hierarchical Monitoring

App1

App Manager

FUSA

App2 AppN

HW Watchdog

Startup 
Verifier

Server 
Monitor

Process Server
Network 

Server
Device Server Time Server

Network 
Driver

Block 
Driver

Drivers

Safe_App

Safehub

Monitor

Report

Pet



No Formal Verification Yet

• Merge request tests: 4500 / 60 mins (QEMU only)

• Nightly tests: > 6000 / 300 mins (QEMU and HW)

• Stress test: > 400 / 60 mins & 12 hrs

• Performance tests: > 200 / 200 mins

• Conformance tests: 3000 / 70 mins

• Fault injection tests: 800 / 20 mins

Numbers are approximate.

Snapshot on Tests 

Defects Discovered

• Unit, component

• POSIX conformance (LTP)

• Scenarios

• Fault injection 

• Stress (stress-ng)

• Performance

• System integration 

Levels of Tests

• Around 3000 defects, various critical levels.

• Only 2 kernel bugs, of course the unverified parts 
(kernel SMP lock and IPI).



What Do We Learn?

Building a proof of concept is easy, but productizing the PoC is, at least, 10 
times harder.

• Some stress-ng stressors failed immediately after they started; some ran forever (hung). -
> Tests with a set of mixed stressors (FS, network, VM, etc.) ran 12+ hours.

• An important scenario test had a failure rate of 40% initially. -> 1000 runs all passed.

Resource management is fundamental, but it is very difficult to get it right.

• A new resource leakage type: CSpace slot leakage.

• When a process terminates, server-side resources for the process must be freed.

The multi-server approach and POSIX do not work efficiently.

• File-based mmap needs multiple calls between process server and file server.

• The select/poll need to multiple calls to required servers.

Tooling is essential for OS developer productivity.

• How would you debug when you cannot run any commands when FS or EMMC fails?

• How would you debug when both network and console are down?

Stay calm and trust your kernel!

Delivery first.

• Working on a reasonable solution and searching for a better one.

• Make it work first, even if the architecture or code is not ideal.

Gain users first; improvements follow.

• Discover APIs use patterns not covered by tests.

• Help the users to tune their applications for the OS for improved 
performance.



What Would We Do Differently?

Shift the functionalities and bookkeeping data of servers to libraries 
linked with applications.

• Keep client states on servers as little as possible to reduce the 
complexity of server restart.

Support Rust early.

• Implement servers in Rust to reduce memory issues.

Prefer notifications to endpoints for I/O syscalls.

• Avoid the syscall restart issue when handling signals.

• Reduce message copy overheads.

• Support async IO naturally.

Tackle complex POSIX APIs early.

• Should just bite the bullet.

• Would have more time for improvements.

Use clang as the default compiler from the beginning.

• Better integration with libc++.

• LLVM-based safety compilers.

Make sure that every OS develop watched the AOS courses 
and read the seL4 manual.

• Just too many new concepts to digest.



Make a Wish

• Page map syscall supports multiple pages in one go.

• Reduce VSpace bookkeeping overhead (aka shadow page tables).

• Page-table-level share to avoid duplicating and mapping frames. 

• A verified big-lock kernel.

• A clustered multi-kernel.

• A fine-grained locking kernel.

• More real-world systems to learn from.

• A toolset or approach for formally verifying core components 
mostly automatically.



Random Fun

• Call printf, malloc, or others, before the code finishes with 
contents in IPC buffer.

• Memory issues are still very challenging.

• If an issue can be reproduced on QEMU, it is probably a 
logic bug.

• When you suspect there a bug in the LibC / compiler / 
kernel, it is probably in your code.





10/16/2024NIO 13

NIO

Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

